Analysis of the Aerodynamic Orbital Transfer Capabilities of a Winged Re-Entry Vehicle

EAN/UPC/ISBN Code 9781423507086


This is a NAVAL POSTGRADUATE SCHOOL MONTEREY CA report procured by the Pentagon and made available for public release. It has been reproduced in the best form available to the Pentagon. It is not spiral-bound, but rather assembled with Velobinding in a soft, white linen cover. The Storming Media report number is A161704. The abstract provided by the Pentagon follows: The ability to perform an inclination change maximizes the maneuverability of an orbiting space vehicle. Most maneuvers utilize a combined plane change and orbital transfer to the new orbit. This costs more in terms of energy and fuel than an in-plane change of orbits. The amount of DeltaV and fuel required for such an energy-intensive inclination change exceeds the benefit of performing the maneuver. However, this paper demonstrates that a winged re-entry vehicle, based on the currently proposed X-3 7, has the necessary thrust to change planes and then perform an in-plane transfer to achieve a new orbit. Using SIMULINKTM and LABVIEW simulation tools, this research found that the use of the aerodynamic lift of a winged re-entry vehicle produced more than 120 of inclination change with the minimal DeltaV achievable. Through small orbital maneuvers and atmospheric re-entry, the aerodynamics of the lift vector demonstrated that the spacecraft retained sufficient energy to prevent perigee collapse using an orbital regulation code to control throttle selling.